Accurate Drift Time Determination by Traveling Wave Ion Mobility Spectrometry: The Concept of the Diffusion Calibration.

نویسندگان

  • Christopher Kune
  • Johann Far
  • Edwin De Pauw
چکیده

Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (μ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between μ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry.

Unlike traditional drift-tube ion mobility-mass spectrometry, traveling-wave ion mobility-mass spectrometry typically requires calibration in order to generate collision cross section (CCS) values. Although this has received a significant amount of attention for positive-ion mode analysis, little attention has been paid for CCS calibration in negative ion mode. Here, we provide drift-tube CCS v...

متن کامل

Application of Ion Mobility Spectrometry for Determination of Morphine in Human Urine

In this study, a rapid, simple and sensitive ion mobility spectrometry (IMS) method with corona discharge as ionization source was described for the morphine determination in human urine. Morphine was extracted and purified from urine samples using solid phase extraction procedure with C18 column. It can offer the clean extracts which no extra peaks were observed in IMS. Under operating experim...

متن کامل

DETECTION AND MEASUREMENT OF ACETONE IN THE BREATH OF DIABETICS BY ION MOBILITY SPECTROMETRY METHOD

Background: The ion mobility spectrometry (IMS) is an analytical technique that is widely used due to its high sensitivity and speed for the detection of ionized molecules in gas phase and under atmospheric pressure. Breath analysis is a new method for obtaining information about person's clinical conditions that is considered by researchers. Human exhaled air contains a variety of components s...

متن کامل

Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry.

A number of phosphatidylcholine (PC) cations spanning a mass range of 400-1000 Da are investigated using electrospray ionization mass spectrometry coupled with traveling wave ion mobility spectrometry (TWIMS). A high correlation between mass and mobility is demonstrated with saturated phosphatidylcholine cations in N(2). A significant deviation from this mass-mobility correlation line is observ...

متن کامل

Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry

Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 88 23  شماره 

صفحات  -

تاریخ انتشار 2016